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Research Focus

Goal: Understand the pathophysiology of and develop novel
therapeutic strategies for neurological diseases.

e SOD1 Familial ALS
— To be described
* MIRNASs —

— Understanding miRNA changes in disease
— Developing novel tools to understand cell type specific miRNASs

* CO9ORF72 —

— Using neurons directly converted from fibroblasts to understand disease
— Understanding clinical phenotype and biomarkers

° Tau -
— Understanding role of tau isoforms

— Understanding how decreasing tau affects seizures (hyperexcitability)

— Developing antisense oligo methods of reducing total tau mRNA or changing
tau splicing patterns




Targets

Huntingtin — Huntington’s Disease

Tau — Alzheimers Disease, FTD, PSP, CBD
Prion protein — prion disease (Creutzfeld-Jacob)
SMN — spinal muscular atrophy

Dystrophin — muscular dystrophy (DMD)
TDP-43 - FTD, ALS

C90ORF72 — FTD, ALS

Myostatin — muscle diseases

TREM2 — AD, Parkinsons, FTD, ALS

Many other pathways




Targeted Therapeutic Approaches

* Define a clear target

* Consider rationale for the therapeutic
— Link to human disease?

— Likely safe?

* Develop a method to engage that target

* Develop a method to measure the target in

living humans
* Applies more broad
* Understand patient

y?
population

e Focused clinical tria




Methods to Increase/Replace
Proteins

e Small molecules
* Viral delivery

® Change splicing (Small
molecules/Antisense oligonucleotides




Methods to Clear/Improve Toxic
Proteins

e Small molecules

® Use the iImmune system (vaccination
Or passive immunization)

* RNA interference
* Antisense oligonucleotides




Antisense Oligonucleotides
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10 fold increase in potency
10 fold increase in duration of action
Marked decrease in toxicities
Increase in therapeutic index

Clinical experience 1000+ patients outside of CNS
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Amyotrophic Lateral Sclerosis

Progressive degenerative disease

— resulting in stiffness, weakness, and
death in 2-5 years from respiratory
failure

No adequate current therapies

Loss of neurons in the brain and
spinal cord in the motor pathways

10% ALS familial / 90% Sporadic

15-20% of familial ALS caused by
superoxide dismutase 1 (SOD1)
mutations




Properties of SOD1

glutathione peroxidase

) H+ _|_'02 H O catalase g O

SOD- CulJ\/ . SOD-Cu?*
(reduced) / N (oxidized)
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Soluble homodimers (153aa)

Very stably folded protein

Binds one Cu and one Zn; active site is Cu

Abundant (~1% of brain protein)
Ubiquitous, Cytosolic




Rationale for Decreasing SOD1 as a
Therapy for SOD1-Mediated ALS

e Mutant Superoxide Dismutase 1 (SOD1)
causes disease by acquisition of a toxic
property that is independent of dismutase
activity

® Decreasing SOD1 likely to ameliorate
disease

* | ikely safe to decrease SOD1




SOD1 in Sporadic ALS
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Wild-type and mutant SOD1 share an aberrant
conformation and a common pathogenic pathway
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Gene Targeted Therapy for ALS

® Preclinical SOD1 Antisense oligo data
—decrease SOD1 In vivo
—distribute widely
— neuroprotective

® Phase | Clinical Trial
® Other SOD1 studies to enable Phase Il




Inhibition of SOD1 MRNA after antisense
oligo treatment In vitro

Control
Oligo ~

“«— Untreated Control L

Effective oligos that suppress SOD1 mRNA levels
—
I

rSOD1146192
i L)
. E——

r’lhSO[D 1146144
r/h SOD1146145
Y —~
5'-UTR 3-UTR Intron Targeting ASOs
|
|




Intraperitoneal Administration of Antisense Oligo
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Delivery of Oligos into CNS

Continuous infusion into right lateral ventricle
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Delivery of Oligos to Rats/Mice

Anti-sense
Oligonucleotides (ASOs)

Lateral
Ventricle




Delivery by intraventricular
administration to Rhesus monkey

spinal cord
Anti Oligo Anti-GFAP
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Intraventricular infusion delivers
oligos widely

Substantia
Hippocampus nigra Brainstem (Pons) Cerebellum
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Rhesus monkey brain

Anti oligo antibody: monoclonal antibody that specifically recognizes modified oligos
100 micrograms infused per day intraventricularly for 14 days




CSF infusion delivers SOD1 Antisense oligos widely

Cerebellum
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Mutant SOD1 Causes ALS-like
phenotype In Rodents

* Mice, rats develop weakness and atrophy
e SOD15%3A Rat

Richard Smith, Don Cleveland




Antisense SOD1 oligos decrease
SOD1 protein in SOD16%3A rat
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Treatment with SOD1 Oligo Extends
Survival in SOD16%3A Rat

Onset Early Disease Survival
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Saline: 102+/11 122+/-11 126+/-8
SOD1 Oligo: 107+/-4 139+/-5 156+/-12

Doubling of survival after onset




An antisense oligonucleotide against SOD1 delivered
intrathecally for patients with SOD1 familial amyotrophic
lateral sclerosis: a phase 1, randomised, first-in-man study

Timothy M Miller, Alan Pestronk, William David, Jeffrey Rothstein, Ericka Simpson, Stanley H Appel, Patricial Andres, Katy Mahoney,
Pegqgy Allred, Katie Alexander, Lyle W Ostrow, David Schoenfeld Eric A Macklin, Daniel A Norris, Georgios Manousakis, Matthew Crisp,
Richard Smith, C Frank Bennett, Kathie M Bishop, Merit E Cudkowicz

www.thelancet.com/neurology Published online March 29, 2013




Antisense Oligonucleotide in CNS In Humans

e 32 subjects, 21 individuals







Antisense Oligonucleotide in CNS In Humans

e 32 subjects, 21 individuals

® Recelved single, dose of Antisense
oligonucleotide designed to lower SOD1 levels

* Intrathecal infusion for 12 hours
e Randomized, double-blind, placebo
® Doses (0.15 mg, 0.50 mg, 1.50 mg, 3.00 mg)




Intrathecal Infusion




Treatment-emergent Adverse Events

Adverse events listed are those that occurred with a frequency >5%
(i.e. occurring in >1 ISIS-SOD1;, patient) or were CTCAE grade 3 or greater in severity

Adverse Event ISIS-SOD1;, Placebo

Term % (# events) % (# events)
Post-LP Syndrome 33% (8) 38% (5)
Back Pain 17% (4) 50% (4)
Nausea 13% (3) 0% (0)
Vomiting 8% (2) 0% (0)
Headache 8% (2) 13% (1)
Fall 8% (2) 0% (0)
Dizziness 8% (2) 0% (0)
Cerebral Infarct 0% (0) 13% (1)
Pneumonia 0% (0) 13% (1)
Cough 0% (0) 13% (1)

Post-LP syndrome, back pain, and nausea/vomiting incidences are not

unexpected given the 17G Tuohy needle used for the infusion e




ISIS-SOD1g, Adverse Events are not
Dose-Related

Adverse Event ISIS-SOD1, Cohort

Term % (# events) Frequency
# events in Cohorts
1, 2, 3, 4)

Post-LP Syndrome 33% (8) 4,2,1,1)
Back Pain 17% (4) (2,1,1,0)
Nausea 13% (3) (2,0,1,0)
Vomiting 8% (2) (2,0,0,0)
Headache 8% (2) (0, 2,0,0)

Fall 8% (2) (1,1,0,0)
Dizziness 8% (2) (1,0,0,1)




Pharmacokinetics




Plasma Concentrations Peak at End of 12-hr Infusion

ISIS 333611 Plasma Concentrations from Patients
iIn Cohorts 3 and 4, (1.5 and 3.0 mg/12 hrs) (333611-CS1)

Infusion period
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Pharmacokinetics - CSF
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Conclusions

« SOD1 ASO was very well tolerated at doses up to 3
mg;
— No safety or tolerability concerns related to ASO were
identified

 Dose dependent CSF and plasma concentrations

were observed,
— observed drug concentrations were reasonably
consistent with expected values (generally within 2-fold)

* Results from this study suggest that antisense
oligonucleotide delivery to the CNS may be a viable
therapeutic strategy for neurological disorders

36




Antisense Oligos: CO90ORF72

Targeting RNA Foci in iPSC-Derived Motor Neurons
from ALS Patients with a C90ORF72 Repeat Expansion
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Planning for SOD1 Phase I

e Natural history of SOD1

« SOD1 as a pharmacodynamics marker?




SOD1 as a Biomarker in CSF

e Does SOD1 In CSF reflect brain SOD17?

e |s SOD1 stable over time?




Antisense Oligo Decreases SOD1 in CSF

Saline [ Oligo

Human SOD1 Human SOD1
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Antisense Oligo Decreases SOD1 in CSF
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SOD1 in CSF Varies Little Over Time
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CSF SOD1 as a Pharmacodynamic Marker

e SOD1 Knockdown In brain leads to
knockdown Iin CSF

® SOD1 CSF varies little with repeat
measurements

SOD1 half life?




mIcroRNAS

® Discovered In 1993
— 2nd discovered in 2000

® Translational repressors;
18-22nt long

® Partial complementarity

— Seed region
— Typically 200-300 mRNAs




MIRNA Antisense Oligonucleotide Safety:

® Phase 2a by Santaris Pharma, 36 patients with
chronic HCV genotype 1 infection.

5 Weekly
injections

Placebo

o - o= o - o = '.'H'E.'_',,__".' S I"'\;,.‘A'_T.: e e i

@
E
T
Ln
1]
= &
g
1=
£ =
SE
= 2
U o9
I &n
e ©
a
1)
=
1=}
=
J
c
1]
al
=

Janssen et al,
NEJM 2013.




MIRNAs as Targets for ALS Therapeutics

e |dentify dysregulated microRNASs In ALS
— In rodent model and in patients

® Develop method for inhibiting these
MIRNAS throughout CNS

® Determine if these mIRNAs negatively or
positively influence disease progression




10 array hits confirmed
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Human Tissues ldentifies 6 Best Targets
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MIR-155 Is increased In human ALS

miR-155
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anti-miR-155 is functional throughout CNS
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Cy3-anti-miR-155 distributes throughout CNS
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Anti-mIR-155 Is present in all cell types
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Anti-Mir-155 Does not Change Onset

Weight Peak Neuroscore 1

o
it

100-|

saline
anti-miR-155

saline
anti-miR-155

Cumulative onset _
(3]
o

b
O
2
c
o
(]

2

)

©
=
S
=

(&)

o

50 100 150
Age (d)

00

o

50 1
Age (d)

SOD1%%3A mice, treated at 60 days of age both intraventricularly and
intraperitoneally




Anti-miIR-155 Extends Disease Duration
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Conclusions

* mIRNAs are dysregulated in ALS in both the
rodent model and in patients

* mMIRNAs can be inhibited broadly in the CNS with
antisense oligonucleotides

* miR-155 remains an exciting therapeutic target
— mIR-155 negatively contributes to disease
— Implications for both sALS and fALS
— Significant increase in survival
— Can read miR-155 in peripheral blood cells




Remaining guestions

® Mechanism of how miR-155 influences
disease

* Which CNS cells express miR-155?
® Other miIRNASs?

* MmiR-155 clinical trial?
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