Cardiomyopathies: clinical diagnostic and research sequencing

Nathan Stitziel, M.D., Ph.D.
Jonathan Heusel, M.D., Ph.D.

Genetics and Genomics of Disease Pathway
Washington University in Saint Louis

September 9, 2015

Promise of genomic medicine
Promise of genomic medicine

Fundamental challenge for human genetics in research and clinical care:

What genetic changes are related to disease?

Clinical case

• 19 year old female
 – Referred to Center for Cardiovascular Genetics for evaluation of hypertrophic cardiomyopathy

 – Past medical history:
 • Cardiac murmur noted at age 2 weeks
 • Diagnosed with hypertrophic cardiomyopathy
 • Surgical septal myectomy at age 10 due to refractory symptoms
Clinical case

• 19 year old female

Premature CAD

Physical exam:
• Short stature (4’10”)
• Hypertelorism
• Slightly triangular mandible
• Harsh systolic murmur
• Asymptomatic bruise upper forearm
Clinical case

• 19 year old female
 – Objective data:
 • Electrocardiogram: Left ventricular hypertrophy
 • Echocardiogram: Left ventricular hypertrophy with significant outflow tract obstruction
 • Review of outside hospital abdominal CT scan (performed for abdominal pain):
 – Incidentally noted duplicated ureter

Clinical case

• 19 year old female with severe left ventricular hypertrophy in the context of short stature, subtle facial abnormalities, and genitourinary malformation
 – Clinical suspicion: Noonan’s Syndrome
 • Had been evaluated at age 12 by medical geneticist and informed she did not have NS
 • Will gene sequencing help inform a diagnosis?
Genetics of cardiovascular disease

Patterns of disease aggregation within families indicate likely genetic influence

- Complex genetic disorders (multiple genes)
- Mendelian disorders (single gene)

Lipids
Blood Pressure
Coronary Heart Disease

Cardiomyopathies
Arrhythmias
Lipids
Vascular syndromes
Inherited cardiomyopathies: Generalizations

(1) Broadly categorized by ventricular geometry and associated arrhythmias
 a) Hypertrophic b) Dilated
 c) Non-compacted d) Arrhythmic

(2) Autosomal dominant (typically)

(3) Genetically complex

Complexity in genetic cardiomyopathies

Locus heterogeneity Allelic heterogeneity Genetic overlap

MYH7 LMNA TTN (>30) 1000s of mutations described MYH7 DCM HCM LVNC
Mendelian CV syndromes: substantial genetic overlap

- Hypertrophic Cardiomyopathy: 20 genes
- Dilated Cardiomyopathy: 32 genes
- ARVC: 8 genes
- Brugada syndrome: 10 genes
- LVNC: 13 genes
- Short QT syndrome: 5 genes
- Long QT syndrome: 20 genes
- CPVT: 5 genes

Complexity in genetic cardiomyopathies

- Locus heterogeneity
- Allelic heterogeneity
- Genetic overlap

- MYH7
- LMNA
- TTN
- DCM
- (>30)

- 1000s of mutations described

- HCM
- DCM
- LVNC

- Incomplete penetrance
- Age-dependent penetrance
- Phenocopies
- Variable expressivity
Identifying genetic basis in familial cardiomyopathies

Causal mutations in known genes

- Hypertrophic ~70%
- Dilated ~35%
- Arrhythmic ~50%
- Non-compacted ~15%

Idiopathic DCM is not all idiopathic

<table>
<thead>
<tr>
<th>Family evaluation</th>
<th>Estimated prevalence of familial disease in idiopathic DCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart review</td>
<td>~2%</td>
</tr>
<tr>
<td>Detailed pedigree construction</td>
<td>~10-25%</td>
</tr>
<tr>
<td>Detailed pedigree construction with screening echocardiography</td>
<td>~30-40%</td>
</tr>
</tbody>
</table>

Yield of genetic screening

Idiopathic DCM ~ Familial DCM

Burkett et al. JACC 2005
Insights from studying inherited basis of cardiomyopathies

HCM: A disease of the sarcomere
- Basic understanding of muscle biology
- Focused hypotheses on G+/P- carriers

ARVC: A disease of the desmosome

DCM: A disease of many diseases
- Force generation, force transmission, energy production, many others to learn

Why test for cardiovascular disease?

1. **Diagnostic clarity**
 - Potential to end “diagnostic odyssey”
 - HCM vs “athlete’s heart”

2. **Identify at risk individuals**

3. **Genotype guided therapies**
 - LongQT syndrome subtypes
 - Enzyme replacement therapy for Fabry’s
 - Promise of cardiovascular genetics
Clinical translation

• Center for Cardiovascular Genetics is:
 – Multidisciplinary clinic focused on evaluation and management of individuals and families with:
 • Known or suspected inherited heart disease (ARVC, DCM, HCM, LQTS, MI/CAD, Lipids, etc)
 • Unclear diagnosis
 • Unknown syndrome

Clinical translation

• Center for Cardiovascular Genetics offers:
 1. Genetic evaluation
 2. Coordinate genetic testing
 3. Determine personalized diagnostic and treatment plans
 4. Genetic counseling and education
 5. IRB-approved research protocols
Clinical translation

Now available: comprehensive genetic testing for disorders that can cause cardiac sudden death.

In collaboration with the Cardiovascular Division at Washington University, Genomics and Pathology Services (GPS) offers a cost-effective analysis of genes with demonstrated importance in the treatment of arrhythmias and cardiomyopathies.

Physician Benefits:
- Detailed patient management through the identification of the genes underlie inheritance of cardiac disorders
- Availability of cardiac-specific gene panels as well as larger comprehensive panels for broader spectrum
- Early genetic testing: investment pre-provocation
- Expert interpretation of genetic results

Patient Benefits:
- Increased likelihood of finding the genetic cause of a cardiac disorder: compared to single-gene tests
- Improved and personalized clinical care with a genetic diagnosis
- Targeted genetic analysis of family members available
- Reliable testing, corrected by our research team
- Easier clinical

Diseases Subsets

<table>
<thead>
<tr>
<th>Disease Subsets</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long QT Syndrome</td>
<td>AKAP9, ANK2, CACNA1C, CAV3, KCNE1, KCNE2, KCNH2, KCNJ2, KCNJ5, KCNQ1, SCN4B, SCN5A, SNTA1</td>
</tr>
<tr>
<td>Brugada Syndrome</td>
<td>CACNA1C, CACNB2, GPD1L, HCN4, KCND3, KCNE3, KCNJ3, KCNJ8, SCNB1, SCNB3, SCN5A</td>
</tr>
<tr>
<td>CPVT</td>
<td>ANK2, CALM1, CASQ2, KCNJ2, KCNQ1</td>
</tr>
<tr>
<td>Short QT Syndrome</td>
<td>CACNA1C, CACNB2, KCNH2, KCNJ2, KCNQ1</td>
</tr>
<tr>
<td>HCM</td>
<td>ACTC1, ACTN2, CSRP3, GLA, LAMP2, MYBPC3, MYH6, MYH7, MYL2, MYL3, MYLK2, MYOZ2, NEXN, PLN, PRKAG2, TNNC1, TNX13, TNNT2, TPM1, TTR</td>
</tr>
<tr>
<td>DCM</td>
<td>ABC9, ACTC1, ACTN2, ANKRD1, BAG3, CSRP3, CTF1, DES, EMD, FHL1, FHL2, GATA1D, LAMP2, LDB3, LMNA, MYBPC3, MYH6, MYH7, NEXN, PLN, RBM20, SCN5A, SGCD, TAZ, TCP1, TMPO, TNX1C, TNX3, TNNT2, TPM1, TTN, VCL</td>
</tr>
<tr>
<td>LVNC</td>
<td>ACTC1, CASQ2, DNTA, LDB3, LMNA, MYBPC3, MYH7, TAZ, TNNT2, VCL</td>
</tr>
<tr>
<td>ARVC</td>
<td>DES, DSC2, DSG2, DSP, JUP, PKP2, RYR2, TMEM43</td>
</tr>
</tbody>
</table>

[Image of the CardioGene Set and Washington University Genomics and Pathology Services logo]
Clinical translation: challenges

- Payors
 - Probands and relatives

- Genetic complexity
 - Families and populations

- Interpreting incidental findings

NGS-based Evaluation for Cardiomyopathy and Arrhythmia Syndromes: A Clinical Genomics Laboratory Perspective

Jonathan Heusel, M.D., Ph.D.
Chief Medical Officer,
Genomics and Pathology Services
Clinical Genetic Testing

- Regulated by CAP and CLIA
- Often LDT, not FDA cleared
- Performed to aid in:
 - Diagnosis
 - Prognosis
 - Therapeutic decision making
- Utility of testing must be established
 - Impact on clinical care
 - Payors
- Ordered by a clinician
 - Not DTC (direct-to-consumer, aka 23andMe)
- Access to genetic counseling
 - Interpretation
 - Patient management
 - Recurrence risk

Single Locus vs. Multiple Gene Testing

- **Single Locus**
 - Locus specific testing
 - Analyze single gene/locus
 - Determine mutation status of limited region
 - Narrowly targeted
 - Result may trigger additional gene testing
 - Cost effective
 - Efficient/time-saving
 - Yields unexpected findings

- **Multiple Gene Testing**
 - Analyze multiple relevant genes
 - Determine mutation status of all relevant genes simultaneously
Next-Generation Sequencing

- Sanger sequencing – 2x read (Bidirectional)
- Next-generation – 100-1000x reads at single position

Table 1 | Clinically available disease-targeted tests

<table>
<thead>
<tr>
<th>Disease area</th>
<th>Disease type</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>Hereditary cancers (for example, breast, colon and ovarian)</td>
<td>10–50</td>
</tr>
<tr>
<td>Cardiac diseases</td>
<td>Cardiomyopathies</td>
<td>50–70</td>
</tr>
<tr>
<td></td>
<td>Arrhythmias (for example, long QT syndrome)</td>
<td>10–30</td>
</tr>
<tr>
<td></td>
<td>Aortopathies (for example, Marfan’s syndrome)</td>
<td>10</td>
</tr>
<tr>
<td>Immune disorders</td>
<td>Severe combined immunodeficiency syndrome</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Periodic fever</td>
<td>7</td>
</tr>
<tr>
<td>Neurological, neuromuscular and metabolic disorders</td>
<td>Ataxia</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Cellular energetics, metabolism</td>
<td>656</td>
</tr>
<tr>
<td></td>
<td>Congenital disorders of glycosylation</td>
<td>23–28</td>
</tr>
<tr>
<td></td>
<td>Dementia (for example, Parkinson’s disease and Alzheimer’s disease)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Developmental delay, autism, intellectual disability</td>
<td>30–150</td>
</tr>
<tr>
<td></td>
<td>Epilepsy</td>
<td>53–130</td>
</tr>
<tr>
<td></td>
<td>Hereditary neuropathy</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Microcephaly</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Mitochondrial disorders</td>
<td>37–450</td>
</tr>
<tr>
<td></td>
<td>Muscular dystrophy</td>
<td>12–45</td>
</tr>
<tr>
<td>Sensory disorders</td>
<td>Eye disease (for example, retinitis pigmentosa)</td>
<td>66–140</td>
</tr>
<tr>
<td></td>
<td>Hearing loss and related syndromes</td>
<td>23–72</td>
</tr>
<tr>
<td>Other</td>
<td>Aortopathies (for example, Noonan’s syndrome)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disorders (for example, cystic fibrosis)</td>
<td>12–40</td>
</tr>
<tr>
<td></td>
<td>Short stature</td>
<td>12</td>
</tr>
</tbody>
</table>
Genetic basis of inherited arrhythmias and cardiomyopathies

Hypertrophic Cardiomyopathy
- 20 genes

Dilated Cardiomyopathy
- 32 genes

LVNC
- 13 genes

CPVT
- 5 genes

ARVC
- 8 genes

Brugada syndrome
- 10 genes

Short QT syndrome
- 5 genes

Long QT syndrome
- 20 genes

Table 2: Summary of Common Cardiac Channelopathy/Cardiomyopathy-Associated Genes (>5% of Disease)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus</th>
<th>Protein</th>
<th>% of Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section I – Long QT Syndrome (LQTS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCNQ1 (LQT1)</td>
<td>11p15.5</td>
<td>L_{Q1} potassium channel alpha subunit (Kv7.1)</td>
<td>50%–55%</td>
</tr>
<tr>
<td>KCNH2 (LQT2)</td>
<td>7q35-q36</td>
<td>L_{NH2} potassium channel alpha subunit (Kv11.1 or HERG)</td>
<td>25%–40%</td>
</tr>
<tr>
<td>SCN5A (LQT3)</td>
<td>3p21</td>
<td>Cardiac sodium channel alpha subunit (Nav1.5)</td>
<td>5%–10%</td>
</tr>
<tr>
<td>Section II – Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYR2 (CPVT1)</td>
<td>1q42.1-q43</td>
<td>Ryanodine receptor 2</td>
<td>60%</td>
</tr>
<tr>
<td>Section III – Brugada Syndrome (BrS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCN5A</td>
<td>3p21</td>
<td>Cardiac sodium channel alpha subunit (Nav1.5)</td>
<td>20%–30%</td>
</tr>
<tr>
<td>Section IV – Cardiac Conduction Disease (CCD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCN5A</td>
<td>3p21</td>
<td>Cardiac sodium channel alpha subunit (Nav1.5)</td>
<td>5%</td>
</tr>
<tr>
<td>Section V – Short QT Syndrome (SQTS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None of the three known disease-associated genes has been shown to account for ≥5% of this disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section VI – Atrial Fibrillation (AF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None of the known disease-associated genes has been shown to account for ≥5% of this disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section VII – Hypertrophic Cardiomyopathy (HCM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYH6</td>
<td>11q13.2</td>
<td>Cardiac myosin-binding protein C</td>
<td>20%–40%</td>
</tr>
<tr>
<td>MYH7</td>
<td>14q12.1-2-q12</td>
<td>β-Myosin heavy chain</td>
<td>15%–20%</td>
</tr>
<tr>
<td>TNNT2</td>
<td>1q32</td>
<td>Cardiac troponin I type 2</td>
<td>1%–2%</td>
</tr>
<tr>
<td>TNNI3</td>
<td>19q13.4</td>
<td>Cardiac troponin I type 3</td>
<td>1%–2%</td>
</tr>
<tr>
<td>Section XIII – Sudden Unexplained Death Syndrome (SUDDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYR2</td>
<td>1p42.1-q43</td>
<td>Ryanodine Receptor 2</td>
<td>30%–15%</td>
</tr>
<tr>
<td>KCNJ2</td>
<td>11p15.5</td>
<td>L_{NJ2} potassium channel alpha subunit (Kv7.1)</td>
<td>5%–10%</td>
</tr>
<tr>
<td>KCNH2</td>
<td>7q11-q16</td>
<td>L_{NH2} potassium channel alpha subunit (Kv11.1 or HERG)</td>
<td>~5%</td>
</tr>
<tr>
<td>Section XIII – Sudden Infant Death Syndrome (SIDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCN5A</td>
<td>3p21</td>
<td>Cardiac sodium channel alpha subunit (Nav1.5)</td>
<td>3%–5%</td>
</tr>
</tbody>
</table>

Heart Rhythm, Vol 8, No 8, August 2011
CardioGene Set Test Design

- Goal is to create one comprehensive platform with utility for multiple cardiac phenotypes

- Strategic planning
 - Utilize design with ability to encompass multiple clinical tests
 - Whole exome approach
 - Analytic sensitivity, specificity, reproducibility determined for well-characterized reference samples
 - Only limited validation steps necessary upon expansion to include additional genes or separate panels
 - Cardiac, Renal, LGMD, Noonan
CardioGene Set Design

- **Target enrichment**
 - In solution hybrid capture (Agilent Clinical Research Exome)

- **Capture Design**
 - Enhanced coverage across exome in disease associated regions
 - OMIM, HGMD, ClinVar

- **Sequencing Platforms**
 - HiSeq 2500, paired-end 101bp

![CardioGene Set Design Diagram](http://genomics.agilent.com)

Agilent SureSelect Target Capture

- Baits are cRNA
- Multiple biotinylation
- High fidelity 120mers

![Agilent SureSelect Target Capture Diagram](http://www.genomics.agilent.com/files/Media/SS_Halo/Magnet584.jpg)
Washington University CardioGene Set

Mutational analysis of all coding regions of all ordered genes

LQTS	AKAP9, ANK2, CACNA1C, CAV3, KCNE1, KCNE2, KCNH2, KCNJ5, KCNQ1, SCN4B, SCN5A, SNTA1
Brugada	CACNA1C, CACNB2, GPD1L, HCN4, KCNQ3, KCNE3, KCNJ8, SCN1B, SCN3B, SCN5A
CPVT	ANK2, CALM1, CASQ2, KCNJ2, RYR2
SQTS	CACNA1C, CACNB2, KCNH2, KCNJ2, KCNQ1
HCM	ACTC1, ACTN2, BRAF, CSRP3, GLA, HRAS, KRAS, LAMP2, MAP2K1, MAFK2, MYBPC3, MYH6, MYH7, MYL2, MYLK2, MYOZ2, NEXN, NNRAS, PLN, PRKAG2, PTPN11, RAF1, RIT1, SHOC2, SOS1, TNNT1, TNNT2, TPM1, TRR
DCM	ABC9, ACTC1, ACTN2, ANKRD1, BAG3, CSRP3, CTIF1, DES, EMD, FHL1, FHL2, GATA1, LAMP2, LBBD3, LMNA, MYBPC3, MYH6, MYH7, NEXN, PLN, RBM20, SCN5A, SGCD, TAZ, TCAF1, TMPO, TNNT1, TNNT2, TPM1, TTN, VCL
LVNC	ACTC1, CASQ2, DNTA, LDB3, LMNA, MYBPC3, MYH7, TAZ, TNNT2, VCL
ARVC	DES, DSC2, DSG2, DSP, JUP, PKP2, RYR2, TMEM43

Case Example

Key: Cardiac Dx

Should genetic testing be performed in this family?
Case Example

Pathogenic *LMNA* p.R190W variant observed.

Carriers of the p.R190W mutation have been described with conduction abnormalities and/or arrhythmias, sudden cardiac death, and heart failure necessitating transplant (Perrot A, et al.; Basic Res Cardiol 104; 90-9; 2009 Jan).

Who should be tested next?

Lines of Evidence to Aid in Variant Interpretation

- Literature
- Clinical Databases
 - HGMD, ClinVar
- Locus Specific Databases
 - Leiden
- Laboratory Specific Databases
 - EmVClass (Emory)
Lines of Evidence to Aid in Variant Interpretation

- **Frequency Data**
 - dbSNP, 1000 genomes
 - NHLBI ESP
 - ExAC Browser

- **Effect on Protein**
 - Conservation Data
 - Grantham scores
 - *In-silico* predictions
 - Protein function
 - Splicing

- **PATHOGENIC**
 - Sequence variation is previously reported and is a recognized cause of the disorder

- **LIKELY PATHOGENIC**
 - Sequence variation is previously unreported and is of the type which is expected to cause the disorder

- **VUS**
 - Sequence variation is previously unreported and is of the type which may or may not be causative of the disorder

- **LIKELY BENIGN**
 - Sequence variation is previously unreported and is probably not causative of disease

- **BENIGN**
 - Sequence variation is previously reported and is a recognized neutral variant
Return to Case Study

- 19 y.o. female
- Indication of Obstructive HCM
- Per records in patient notes and discussion with the clinician consideration of Noonan syndrome
- HCM gene set ordered
 - 31 genes
 - Recent addition of Noonan-associated genes

1- Pathogenic variant
Non-synonymous (Variants found : 1)
RAF1 (chr3:g.12645687G>A)
NM_002880:c.782C>T NP_002871:p.P261L
A pathogenic variant in \textit{RAF1}, p.P261L, was identified.

This heterozygous non-synonymous variant is located in the CR2-segment of the \textit{RAF1} proto-oncogene, a serine-threonine protein kinase involved in signaling in the MAPK pathway. Missense alterations within \textit{RAF1} codon 261 including this exact variant have been described in association with Noonan syndrome.

This alteration affects a highly conserved amino acid and is predicted to be deleterious in nature on the basis of \textit{in silico} modeling.

Case Study

- Identifying the pathogenic mutation in this case:
 1. Solidified diagnosis
 2. Revealed additional need for clinical evaluation
 3. Opens potential to disease-specific therapies in future
 4. Allows for molecular evaluation and early diagnosis/management of at-risk relatives
Summary: NGS testing in genetic evaluation of inherited diseases

- Genetic testing has utility in
 - Diagnosis
 - Prognosis
 - Therapeutic decision making
- Allows for appropriate patient surveillance and recurrence risk counseling
- Increasingly will be a critical component in many aspects of healthcare

Summary: NGS testing in genetic evaluation of inherited diseases

- Clinical genetic testing and reporting using the Washington University CardioGene Set:
 - 80 genes organized into broad or highly focused subpanels
 - Phenotype-based selection
 - Exome-based hybrid capture with enhanced coverage for medically relevant genes
- Dynamic process of continuous re-evaluation, new genes, new disease groupings
- Clinical Utility is improving as knowledge base improves
- Future:
 - curated variant databases to ensure low VUS rate
 - Full integration with human CNV map (CMA analysis)
Thank you.

Questions?